
Automatic Debugging Support for UML

Designs

_gk_

Johann Schumann

RIACS / NASA Ames, Moffett Field, CA 94035 USA,

s chtmaann_pt oleray, arc. nasa. gov

Summary. Design of large software systems requires rigorous application of soft-

ware engineering methods covering all phases of the software process. Debugging

during the early design phases is extremely important, because late bug-fixes are
expensive.

In this paper, we describe an approach which facilitates debugging of UML

requirements and designs. The Unified Modeling Language (UML) is a set of no-

tations for object-orient design of a software system. We have developed an algo-

rithm which translates requirement specifications in the form of annotated sequence

diagrams into structured statecharts. This algorithm detects conflicts between se-

quence diagrams and inconsistencies in the domain knowledge. After synthesizing

statecharts from sequence diagrams, these statecharts usually are subject to manual

modification and refinement. By using the "backward" direction of our synthesis
algorithm, we are able to map modifications made to the statechart back into the

requirements (sequence diagrams) and check for conflicts there. Fed back to the user

conflicts detected by our algorithm are tile basis for deductive-based debugging of
requirements and domain theory in very early development stages. Our approach

allows to generate explanations on why there is a conflict and which parts of the

specifications are affected.

1 Introduction

Size and complexity of software systems has increased tremendously. There-

fore, the development of high-quality software requires rigorous application

of sophisticated software engineering methods. One such method which has

become very popular is the Unified Modeling Language. UML [12] has been

developed by the "three amigos" Booch, Jacobson, and Rumbaugh as a com-

mon framework for designing and implementing object-oriented software.

UML contains many different notations to describe the static and dynamic

behavior of a system on all different levels and phases of the software design

process.

Although UML provides a common notational framework for require-

ments and design, UML, as any other language, does not eliminate bugs

and errors. These bugs must be found and fixed in order to end up with

a correctly working and reliable system. It is well known, that debugging

a large software system is a critical issue and can be a major cost-driving

factor. Changes which have to be applied to the system (e.g., to fix a bug)



2 .IohannSchumann

arebecomingsubstantiallymoreexpensive,tl,elatertheyaredetected(Fig-
ure1).Whenanerrorisdetectedearlyduringthedefinitionphase,itscostis
relativelylow,becauseit onlyinfluencestherequirementsdefinition.Bugfixes
inaproductalreadyshippedcanbeupto60 100timesmoreexpensive[8].

dr

2

1.5 - 6

Dct_nition Development alter Release

Fig. 1. Relative costs for changes/bugfixes on different stages (based on [8]).

Therefore, it is mandatory to start with debugging as early in the project

as possible. In this paper, we will discuss an approach which supports debug-

ging of scenarios (more precisely UML sequence diagrams) with respect to

given domain knowledge. This is done as a part of an algorithm [13] which

can synthesize UML statecharts from a number of sequence diagrams. This

synthesis step can be seen as a transformation from requirements to system

design. It does not only facilitate fast and justifiable design from requirements

(sequence diagrams), but also substantially helps to debug the generated de-

signs. Because sequence diagrams usually cover only parts of the system's

intended behavior, the generated statecharts need to be refined and modi-

fied manually. By applying the synthesis algorithm in a "backward" way, the

refined statechart can be checked against the requirements. Each conflict is

reported to the user and indicates a bug.

For practical applicability of any debugging aid, the presentation of the

bug, its cause and effect is of major importance. In our approach, we rely on

logic-based explanation technology: all conflicts correspond to failure in log-

ical reasoning about sequence diagrams, statecharts, and domain knowledge.

Ongoing work, as discussed in the conclusions, uses methods from automated

deduction to point the user to the exact place where the conflict occurred

and which parts of the models and specification are affected.

This paper is organized as follows: Section 2 gives an overview of ma-

jor UML notations and a typcial iterative software design process. Then we

will describe how sequence diagrams are annotated for a justified synthesis



DebuggingSupportforUMLDesigns 3

ofstatecharts(Section-1).Basedonthisalgorithmwediscussnwtho(ls for

debugging a sequen('e diagram and a synthesized statechart. In Section 7 we
discuss fnture work and t:onclu(le.

Throughout this paper, we will use one example to illustrate our approach.

The example concerns the interaction between an espresso vending machine

and a user who is trying to obtain a cup of coffee. This example (based on

the ATM example discussed in [13,6]) is rather snmll, yet complex enough

to illustrate the main issues. The requirements presented here are typical

scenarios for user interaction with the machine (e.g., inserting a coin, selecting

the type of coffee the user wants, reaction on invalid choices, and pressing

the cancel button). More details of the requirements will be discussed when

the corresponding UML notations have been introduced.

Ir_,4

2 UML

The Unified Modeling Language is the result of an effort to bring together

several different object-oriented software design methods. UML has been de-

veloped by Beech, Jacobsen and Rumbaugh [12] and has gained wide-spread

acceptance. A variety of tools support the development in UML; among them

are Rhapsody [10], Rational's Rose [9], or Argo/UML [1].

On the top-level, requirements are usually given in the form of use cases,

describing goals for the user and system interactions. For more detail and

refinement, UML contains three major groups of notations: class diagrams

for describing the static structure, interaction diagrams for requirements, and

state diagrams and activity diagrams for defining dynamic system behavior.

Below, we will illustrate the notations which are important for our approach

to debugging of UML designs.

2.1 Software Development with UML

Although no explicit development process is prescribed for UML, UML de-

sign usually follows the steps of Inception, Elaboration, Construction, and

Transition, used in an iterative manner. In this paper, we will not elaborate

on the process model. For details, cf., e.g., [4]. The importance of support for

debugging of UML designs on the level of sequence diagrams (requirements),

and statecharts becomes evident, when we look at a graphical representation

of an iterative development process (Figure 2). The design starts by analyz-

ing the (physical) process at the lower left part of the figure. The result of

the analysis comprises the requirements (e.g., as a set of sequence diagrams),

and knowledge about the domain (henceforth called domain theory). Based

on these, a model of the system is developed, consisting of class diagrams,

statecharts and activity diagrams. This model must now be implemented.

Modern software engineering tools provide automatic code-generation (or at



4 ,h)hann Schumann

least support) for ttlis step. Finally, the produced system must be verified

against tile physical pro(:ess, and its performance tuned.

Traditionally, the way to get a working system is simulation (process-

requirements model), and testing (requirements-model-system). Here, errors

and bugs have to be found anti removed. Within an iterative design process,

these steps are performed over anti over again, depicted by the circular arcs.

To keep these iterations fast (and thus cost-effective), powerful techniques

for debugging requirements against domain knowledge, and models against

requirements are vital. Our approach supports this kind of debugging and

it will be discussed in the next section, following a short description of the

basic concepts of class diagrams, sequence diagrams, and statecharts.

Requirements
specificatmn

Development

-1

-- Si ring
<

Performance tuning/

-verification

Fig. 2. lterative Design Process

Model

O
t2_
t_

t

System

2.2 Class Diagram

A class diagram is a notation for modeling the static structure of a system. It

describes the classes in a system and the relationships between them. Figure 3

shows an example of a class diagram for our coffee-vending machine example.

In an object-oriented fashion, the main class (here "coffee machine") is broken

down into sub-classes. The aggregation relation (----_) shows when one class

is part of another one. The generalization relation t--t>) shows when one

class is an instance of another. For further details, see e.g., [12].

2.3 Statecharts

Statecharts [5,12], are finite state machines extended with hierarchy and or-

thogonality. They allow a complex system to be expressed in a compact and



DebuggingSupportfi)rUMLDesigns

top-level

dia_g _ Cance,
I h_ndno

!

...J l__ 1

Fig. 3. A Class Diagram for the Coffee machine.

el [cl1 / a'n

!

A {composite ttate)

Fig. 4. Example of a Statechaxt.

elegant way. Figure 4 shows a simple example of a stateehart. Nodes can

either be simple nodes (A1, A2, A3, B, and C), or composite nodes (node

A in the figure) which themselves contain other statecharts. The initial node

in a statechart is marked by o. Transitions between states have labels of the

form e[c]/a. If event e occurs and guard c holds, then the transition may

be selected to fire which results in action a being taken and a state change

occurring. This behavior is extended in a natural way to handle composite

nodes.



6 Johann Schumann

User Coffee-Ul

r.._D2__p}A'+y_cudy Light
i _+c. +o,. ..q
' Rcqucsl Sclectio_

Enter Selection

N_ Coffee mcss_

Release Coin

Request take coir

I

: Take coin

Display Ready Li|
i.

I

Conlrol

!_ Check seleclmn

Ingr. not avuiluble[

User

t rc_
Enter Selection

i Request Sclcctic

=Acknowledge Car

Relca_ Coin

I Request take coir
]

i Take coin

Display Ready Li

Coffee-UI Conlrol

ght

Check _election

selection not valid

ccl

I

Fig. 5. Interaction with acoffee vending Fig. 6. Another interaction with a col-

machine (SD1). fee vending machine (SD2).

2.4 Sequence Diagrams

Scenarios describe concrete examples of the system's intended behavior. In

UML scenarios can be expressed as sequence diagrams. A sequence diagram

(SD) shows the interaction between objects of a system over time. The SD

in Figure 5 is an example for interactions between the objects "User", the

user interface of the coffee machine ("Coffee-UI"), and the machine ("Con-

trol") itself. The vertical lines represent the time-line for the given object,

defining the object's life during the interaction. IVlessages (like "Insert coin")

are exchanged between the objects. Figure 6 is a different scenario for our

coffee-machine. It describes an invalid selection by the user (e.g., choosing

sugar and sweetener at the same time).

3 Extending Sequence Diagrams

The simplicity of sequence diagrams makes them suitable for expressing re-

quirements as they can be easily understood by customers, requirements en-

gineers and software developers alike. Unfortunately, the lack of semantic

content in sequence diagrams makes them ambiguous and therefore difficult

to interpret. Let us assume that in our example, there exists an additional

sequence diagram, SD0, identical to SD1 in Figure 5 except that there are two

"Insert coins" messages adjacent to each other. There are three possible ways

to interpret the conjunction of the two SDs -- either a cup of coffee costs

one or two coins (ridiculous!), or it costs just one coin, in which case SD0



DebuggingSupportfi)rUMLD('signs 7

is incorrect.Tileotiwrcase(twocoinsneeded)invalidatesSDI.In practice,
suchambiguitiesareoftenresoNedbyexaminingtheinformalrequirements
documentationbut,insomec,'_ses,ambiguitiesmaygoundetectedleadingto
costlysoftwareerrors.

Fortheautomaticgenerationof(conflict-free)designs,suchdocuments
areusuallytooinformal.Ontheotherhand,theneedtoprovideafullformal
domaintheorycontainingall semanticinformationis clearlytoorancha
burdenforthedesignerandthusnotacceptableinpractice.

Ourapproachallowsforacompromise:theusercanannotatemessagesin
asequencediagramwithapre/post-conditionstylespecificationexpressedin
OCL,UML'slogic-based specification and constraint language. For success-

ful conflict detection (and statechart synthesis), only a small percentage of

messages need to be annotated at all. This specifications should include the

declaration of global state variables, where a state variable represents some

important aspect of the system, e.g., whether or not a coin is in the coffee-

vending machine. Pre- and post-conditions should then include references to

those variables. Our experience with the case studies carried out so far (see

Conclusions) is that the state variables and their data types usually directly

"fall out" from the class diagram. Note that not every message needs to be

given a specification, although, clearly, the more semantic information that

is supplied, the better the quality of the conflict detection. Currently, our

algorithm only exploits constraints of the form var = value, but there may

be something to be gained from reasoning about other constraints using an

automated theorem prover, e.g., [7] or constraint solving techniques.

Fig. 7 gives specifications for selected messages in our coffee-machine ex-

ample. Here, the state variables are the boolean variables goinInMachine,

CoinInReturnSlot, CoffeeTypeSelected, the variable Coin reflecting the

number of coins in the machine (0, or 1), and SelectedCoffeeType. In order

to talk about all values of the state variables at a given point, we use the

notion of a state vector. This is a vector of values of the state variables. In

our example, the state vector has the following form:

<CoinInMachine _, CoinInReturnSlot _ , CoffeeTypeSelected',

Coin', SelectedCof feeType'>

The notation var" extends the possible value for a state variable by an

undetermined value, denoted by a "?", i.e., vat" E Dora(vat) t_J{?}. For use

with our algorithm, we will annotate each message of a sequence diagram

with a statevector where the values of the state variables are determined by

the algorithm described below.

4 Automatic Synthesis of Statecharts from Sequence

Diagrams

The framework for debugging UML designs is based upon an algorithm for

automatic synthesis of stateeharts from sequence diagrams and a domain the-



8 .Jot_ann Schumann

CoinInMachine, CoinInReturnSlot, CoffeeTypeSelected : Boolean
Coin : 0..1

SelectedCoffeeType :enum {none,Espresso,Cappuchino,Milk)

context

pre:
post:

context

pre:

post:

context

pre:

post

context

pre:

post

context

pre:

post

context

pre:

insert coin

CoinIRMachine = F ;

CoinInMachine = T and Coin = I ;

Enter Selection (CT :enum {none,Espresso,Cappuchino,Milk})

CoffeeTypeSelected = F ;

CoffeeTypeSelected = T and SelectedCoffeeType = CT ;

Take coin

CoinInReturnSlot = T ;
: CoinInReturnSlot = F and CoinInMachine = F ;

Display Ready Light
CoinInReturnSlot = F and CoinInMachine = F ;

Request Selection

CoffeeTypeSelected = F ;

Release coin

Coin = 1 ;

post: CoffeeTypeSelected = F and CoinInReturnSlot = T and Coin=O

and CoinInMachine = F and SelectedCoffeeType = none ;

context Request take coin

pre: CoinInReturnSlot = T ;
post:

context Acknowledge cancel

pre: CoinInMachine = T ;

post:

Fig. 7. Domain theory for messages in the coffee-machine example.

ory [13]. The process to convert a number of SDs into a structured statechart

consists of several steps: in the first step, each SD is annotated and conflicts

between the SD and the domain theory (and hence, other SDs) are detected

and reported to the user. Then, a statechart for each of the objects in the SD

is generated; and all statecharts for an object are merged into a single state-

chart. The final step of the synthesis introduces hierarchy by grouping nodes

into composite nodes, thus enhancing readability. In this paper, we are only

concerned with the first, conflict detection part (as a basis for debugging),

and the final result, the statechart. For details on the algorithm see [13].

There are two kinds of constraints imposed on a sequence diagram: con-

straints on the state vector given by the OCL specification, and constraints

on the ordering of messages given by the SD itself. These constraints must

be solved and arising conflicts be reported to the user. More formally, the



Debugging Support fi_r UML Designs 9

process of conflict detection can be written ;us follows. An annotated sequence

diagram is a sequence of messages mr,..., rnn, with

....... 1 post sPrre __ post,_po_:_ po_t pr_ 2__ . _ (1)S0 ,"¢1 "' Sr-I _ Sr

pre postwhere the, _ , s, are the state vectors immediately before and after mes-
.presage m, is being sent. Si will be used to denote either _, or sP,°st; sPre[j]

denotes the element at position j in s pre (similarly for sP,°st).

In the first step of the synthesis process, we assign values to the variables

in the state vectors as shown in Figure 8. The variable instantiations of the

initial state vectors are obtained directly from the message specifications

(lines 1,2): if message m, assigns a value y to a variable of the state vector in

its pre- or post-condition, then this variable assignment is used. Otherwise,
the variable in the state vector is set to an undetermined value ?. Since each

message is specified independently, the initial state vectors will contain a lot

of unknown values. Most (but not all) of these can be given a value in one

of two ways: two state vectors, S_ and St (k #/), are considered the same if

they are unifiable (line 6). This means that there exists a variable assignment

such that ¢(S_) = ¢(Sl). This situation indicates a potential loop within a

SD. The second means for assigning values to variables is the application of

the frame axiom (lines 8,9), i.e., we can assign unknown variables of a pre-

condition with the value from the preceeding post-condition, and vice versa.

This means that values of state variables are propagated as long as they are

not changed by a specific pre- or post-condition. This also assumes that there

are no hidden side-effects between messages.

A conflict (line 11) is detected and reported if the state vector immediately

following a message and the state vector immediately preceding the next

message differ.

Ezaraple 1. Let us consider how this algorithm operates on the first few mes-

sages of SD1 from Figure 5. When annotating the first message ("Display

Ready Light"), we obtain the following state vector on the side of the user-

interface: Sl = <F,F,?,?,?>. The values of the first two state variables are

determined by the message's pre-condition in the domain theory. The state-

vector oc2 on the receiving side of our message only consists of "?'. As a

pre-condition for the message "Insert coin" we have CoJ.nInMach±ne = F.

Thus we have $3 = <F,?,?,?,?> as the state vector. All other messages in

SD1 are annotated in a similar way. Now, our algorithm (lines 4-12) tries

to unify state vectors and propagate the variable assignments. In our case,

the attempt to unify $2 with $3 would assign the value F to the first vari-

able in 82, yielding 5'2 = <F,?,?,?,?>. Now, both state vectors are equal.

Then, variable values are propagated using the frame axiom. In our case, we

can propagate the value of CoinInReturnSlot = F (from Sl) into $2 and

$3, because the domain theory does not prescribe specific values of this state

variable at these messages. Hence, its current value F can be used in the other



10 .lohann S<'hunlann

Input. An annotated SD

Output. A SD with extended annotations

1 for each rues.sage m, do

2 if m, has a precondition vj = y then spre[3] := ,q else spre[j] := ? fi

3 if m, has a postcondition v+ = y then sp°st[j] := y else sP°St[j] := ? fl
4 for each state vector S+ do

5 if there is some St _- S_ and some unifier _ with o(Sk) = ¢p(St) then

6 unify Sk and St;

? propagate instantiations with frame axiom:

pre spre[j I := post,.,8 for eachj, i withi >0 : ifs i [3] - '_ then-. si-1 t31 fl

9 if sP°St[j] = ? then sP°St[j]:= sP,reLi] fl
prer .1

10 if there is some i,j with sp°st[j] # si+tU l then

II Report Conflict;
12 break;

Fig. 8. Extending the state vector annotations.

state vectors, finally yielding $2 = $3 = <F,F,?,?,?>. After performing all

unification and propagation steps, we obtain an annotated sequence diagram

as shown in Figure 9. The conflict indicated there will be discussed in the

next section.

5 Debugging a Sequence Diagram

The algorithm from the previous section detects conflicts of a SD with the

domain theory (and thus with other sequence diagrams). Any such conflict

which is detected corresponds to a bug which needs to be fixed. The bug can

be in the sequence diagrams, which means that one or more sequences of ac-

tions are not compatible with the domain theory, and henceforth with other

SDs. Such a situation often occurs when sequence diagrams and domain the-

ory for a large system are developed by different requirements engineers. Our

algorithm is capable of directly pointing to the location where the conflict

with the domain theory occurs. The respective message, together with the

instantiated pre- and post-conditions, as well as the required state vector val-

ues are displayed. This feature allows to easily debug the sequence diagram.

Of course, the error could be in the domain theory instead. For example, one

designer could have set up pre- or post-conditions which are too restrictive

to be applicable for scenarios, specified by other designers. In that case, the

domain theory must be debugged and modified. Our algorithm can also pro-

vide substantial support here, because it is able to display the exact location

where the conflicting state variables have been instantiated. Especially in

long sequence diagrams the place where a state variable is instantiated and



DebuggingSupportfi)rUMLDesigns 11

theplacewheretheconflictoccurscanbefarapart.Thecurrentw_rsionof
ouralgorithmprovidesonlyrudimentaryfeed-backasdemonstratedin the
examplebelow.Futurework(whichalsoallowsricherOCLconstructsto
beused)requiresmoreelaborate,human-readabledescriptionsof theerror
trace.Automatedtheorernproversandworkonproofpresentation,likethe
ILFsystem[2,3]willbeusedforthatpurpose.Suchasystemwillnotonlyex-

plain the possible reasons for a conflict, but can also give (heuristics-driven)

hints to the user on how to fix the problem.

Example 2. The following example shows, how conflict detection can be used

for debugging: Figure 9 shows SD1 from Figure 5 after the state vectors have

been extended by our algorithm of Figure 8. Our procedure has detected a

conflict with the domain theory. As an output it provides the messages and
state vectors which are involved in the conflict:

Conflict in SDI: Object Coffee-UI
statevector after "Insert coin" = <T,F,T,l,none> [Msg #2]

statevector before "Request Selection" = <T,F,F,l,none> [Msg #3]

conflict in variable "CoffeeTypeSelected"

conflict occurred as consequence of unification of

statevector after "Display Ready Light" = <F,F,T,0,none> [Msg #I]

statevector after "Display Ready Light" = <F.F,T,0,none> [Msg #11]

statevector after "Take coin" = <F,F,T,0,none> [Msg #10]

This arises because state vectors SV1 (state vector before "Display Ready

Light") and SV2 (after "Take coin") are unified (Figure 9 shows the instan-

tiations of the vectors after unification). This corresponds to the fact that
the coffee machine returns to its initial state after "Take coin" is executed.

The state vectors tell us that there is a potential loop at this point. A sec-

ond execution of this loop causes the state variable "CoffeeTypeSelected" to

true, when the system asks for a selection. However, the domain theory tells

us that this variable must be false as a pre-condition of the "Request Selec-

tion" message. Hence, there is a conflict, which represents the fact that the

developer probably did not account for the loop when designing the domain

theory.

The user must now decide on a resolution of this conflict -- i.e., to debug

this situation. The user either

* can tell the system that the loop is not possible, in which case the unifier

that detected the loop is discarded. This amounts to modifying the an-

notated sequence diagram (by restricting possible interpretations). The

user can

, modify the sequence diagram at some other point, e.g., by adding mes-

sages; or
* modify the domain theory. In our example, the action taken might be that

the domain theory is updated by giving "Release coin" the additional



12 ,h)hann Schumann

_r,T,T,0,nonm)

rTT0( .... _ono)

rTT0

rWT0¢ .... nono)

User Coffee- U I Control

_Dis_?lay Ready I_.i_ _tF.,. T........ i

..... , ........ _.RecLuest Selectior _'rl'r_"_r " .1

t Enter Selection_T, r. r0 1, none • _T, r, T, l. cT_

Check selection
I

= Ingr. not available
(T, r, T, X0 c'r_

T F T x CTNo Coffee messa ......

Release Coin
-- <T, F,T, X,CT>

Request take coin

(IF, T, T, 0, no_.

Take coin
r IPT 0 no

Display Ready Lig _t
F WT O• .... no •

I

Fig. 9. Sequence Diagram SD1 with extended annotations. A conflict has occurred.

postcondition CoffeeTypeSelected = false. This extra post-condition

resets the value of the variable (i.e., the selection) when the user is asked

to remove the coin. The position of the change has been obtained by

systematically going backwards from SV2. Although possible locations

are automatically given by the system, the decision where to fix the bug

( at "Release coin" or at "Take coin") must be made by the user. Here, the

second possibility was chosen, because the specification for that message

modified a state variable which is related to the variable which caused

the conflict.

6 Debugging a Synthesized Statechart

When the statechart synthesis algorithm successfully terminates, it has gen-

erated a human-readable, hierarchically structured statechart, reflecting the

information contained in the SDs and the domain theory. In general, how-

ever, sequence diagrams usually describe only parts of the intended dynamic

behavior of a system. Therefore, the generated statechart can only be a skele-

ton rather than a full-fledged system design. Thus, the designer usually will

extend, refine, and modify the resulting statechart manually. Our approach

takes this into account by generating a well structured, human-readable stat-

echart which facilitates manual refinement and modification.

However, these manual actions can be sources of errors which will have

to be found and removed from the design. In the following, we describe two

approaches, addressing this problem.



_rq

Debugging Support for UML Designs 13

6.1 Classical Debugging

The traditional way to find bugs in a statechart is to run simulations and large

numbers of test cases. Most commercial tools for statecharts, like Betterstate,

Statemate, or Rhapsody support these techniques. Some tools also provide

more advanced means for analysis, like detection of deadlocks, dead branches,

non-deterministic choices, or even model checking for proving more elaborate

properties. In this paper, we will not discuss these tec|miques.

6.2 Debugging w.r.t. Requirements

Whenever a design (in our case the statechart) is modified, care must be

taken that all requirements specifications are still met, or that an appropri-

ate update is made. Traditionally, this is done manually by updating the re-

quirements document (if it is done at all). Bugs are usually not detected (and

not even searched for) until the finished implementation is tested. Thereby,

late detection of bugs leads to increased costs. By considering the "reverse"

direction of our synthesis algorithm, we are able to

• check that all sequence diagrams are still valid, i.e., that they represent

a possible sequence of events and actions of the system

• detect conflicts between the current design (statechart) and one or more

SDs, and

• detect inconsistencies with respect to the domain theory.

The basic principle of that technique is that we take one sequence diagram

after the other, together with the domain theory, and check if that sequence of

messages is a possible execution sequence in the given statechart. Here again

we use logic-based techniques, similar to those described above (unification

of state vectors, value propagation with the frame axiom). An inconsistency

between the (modified) statechart and the SD indicates a bug (in the SD

or SC). By successively applying patches to the SD (by removing or adding

messages to the SD) the algorithm searches for possible ways to obtain an

updated and consistent SD. Since in general more than one possible fix for

an inconsistency exists, we perform an iterative deepening search resulting

in a solution with the fewest modifications to the sequence diagram. We are

aiming to extend this search by applying heuristics to select "good" fixes.

Here again, the form of feed-back to the user is of major importance. We

are envisioning that the system can update the requirements and provide

explanations for conflicts in a similar way as described above.

Example 3. The statechart in Figure 10 has been refined. The transition be-

tween ,¥2 and N3 has been extended in such a way that first event e2, then

e3 with action a3 has to occur before the state N3 is reached. The origi-

nal statechart has been generated from a sequence diagram as shown on the

right-hand side of Fig. 10. The modification of the statechart is propagated



14 JohannS('humaml

backto thesequencediagramswheretilechangeisclearlymarked.In this
example,tileextensioncouldbemadewithoutcausingaconflict.However,
it isadvisableforthedesignerand/ortherequirementsengineertocareflllly
observethesechangesinordertomakesurethatthesemodifiedrettuirements
stillmeettheoriginalintende(|systembehavior.

Obirct I ObJlce2

J

f)l tel t

¢i

_t

e2

aJ

r
Fig. 10. Statechart with manual refinement (the removed transition is :;hewn as a
dashed line, the new elements are bold), and the sequence diagram as updated by

our algorithm (right).

7 Future Work and Conclusions

We have presented a method for debugging UML sequence diagrams and

statecharts during early stages in the software development process. Based on

an algorithm, designed for justified synthesis of statecharts, we have identified

two points where conflicts (as a basis for debugging) can be detected: during

extending the annotations of a SD (conflicts w.r.t, the domain theory), and

updating of sequence diagrams based upon a refined or modified statechart.

The algorithm which is described in [13] has been implemented in Java

and has been used for several smaller case studies in the area of object-

oriented systems, user interfaces, and agent-based systems [11]. Current work

on this part include integration this algorithm into a commercial UML tool

(MagicDraw). Currently we are extending our synthesis algorithm to provide

the debugging facilities described in this paper. Future work will mainly focus

on integrating and extending explanation technology into our system.

Debugging large designs with lengthy and complex domain theories vitally

depends upon an elaborate way of providing feed-back to the user. Starting

from the basic information about a conflict (i.e., a failed unification), we will

use theorem proving techniques of abduction and counter-example generation

to provide as much feed-back as possible on where the bug might be, and how



Debugging Support for UML Designs 15

to fix the problem I. These techniques will be combined with tools capable of

presenting a logic statement in human-readable, problem-specific way (e.g.,

ILF [2,3]). Only, if debugging feedback can be given in the notation of the

engineering domain rather than in some logic framework, such debugging aids

will be accepted in practice.

It is believed that UML (and tools based upon this notation) will have

a substantial impact on how software development is made. By providing

techniques which do not only facilitate design by synthesis, but also provide

powerfld means to debug requirements and designs in early stages we are able

to contribute to tools which are useful in design of large software systems.

References

1. Argo/UML. University" of California, Irvine, 1999. http://argouml.tigris.org.

2. B. I. Dahn and A. Wolf. Natural Language Presentation and Combination of

Automatically Generated Proofs, volume 3 of Applied Logic Series, pages 175-

192. Kluwer Academic Publishers, 1996.

3. B. I. Dahn et al. Integration of Automated and Interactive Theorem Proving

in ILF. In Proc. CADE-14, volume 1249 of LNAI, pages 57-60. Springer, 1997.

4. M. Fowler. UML Distilled. Addison Wesley, 1997.

5. D. Haxel. Statechaxts: A visual formalism for complex systems. Science of

Computer Programming, 8:231-274, 1987.

6. T. M_nistS, T. Syst_i, and J. Tuomi. SCED Report and User Manual. Report

A-1994-5, Dept cf Computer Science, University of Tampere, 1994.

7. M. Moser, O. Ibens, R. Letz, J. Steinbach, Chr. Goller, J. Schumann, and

K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. Journal

of Automated Reasoning, 18:237-246, 1997.

8. R. Pressman. Software Engineering - a Practitioneer's Approach. McGraw-HiU,

1997.

9. Rational Rose. Rational Software Corporation, Cupertino, CA, 1999.

10. Rhapsody. I-Logix Inc., Andover, MA, 1999.

ll. J. Schumann and .l. Whittle. Automatic synthesis of agent designs in uml. In

Proc. of Goddard Workshop on Agent-based Systems. Springer, 2000. to appear.

12. Unified Modeling Language Specification, Version 1.3, 1999. Available from

Rational Software Corporation, Cupertino, CA.

13. J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios.

In Proc. ICSE 2000, 2000.

t This problem essentially is equivalent to finding which hypotheses are missing or

wrong when a conjecture cannot be proven valid.


